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Local structure analysis of the hard-disk fluid near melting
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The local structure of the hard-disk fluid is studied across its melting transition by means of Monte Carlo
simulations and measurement of a local order parameter. Evidence for a linear behavior of this quantity in an
intermediate density range is found, as well as indications for a possible ensemble difference between constant
volume and constant pressure simulations within the presently accessible system sizes.
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I. MOTIVATION moves per particle between each two configurations. Previ-
ous investigationg10] had shown that theglobal bond-

The melting transition of strictly two-dimensional fluids, orientational correlation function typically decays on a time
discovered as early as 1962 by Alder and Wainwright forscale of 50 attempted moves per particle. The generated con-
hard diskq 1], has been under debate since Nelson, Halperinfigurations can thus safely be regarded as statistically inde-
and Young proposed, based on ideas of Berezinkkister-  pendent.
litz, and Thouless, a novel continuous two-step scer@ijo Densities are reported as usual in reduced units
in addition to the usual first-order one-step transition. Thisp=0?N/V where ¢ denotes the hard-disk diameter. The
possibility spurred on the simulation community to searchconversion between this reduced density and the correspond-
for this Halperin-Nelson-YoungHNY) transition in a vari- ing reduced volume is given by p=2/(/3v). The maxi-
ety of simple and complex fluids. We refer to the extensivemally compressed solid attains a close-packed density of
reviews and discussions in Rd8] for more information. p_ . =2/\/3~1.15 in these units.

Despite this longstanding quest to solve the puzzle of melt- The technique we selected to monitor the fluid-to-solid
ing in two dimensions more recently quite a few computa-transition relies on the analysis of local structures in the fluid
tional studie§4—17] reexamined the problem within various [25], see Refs[25,26 for more details. We quantify the
models and using many different techniques. For novel theyya1 order near a point particle located by the two-

oretical approaches see Refd8-2(. Stimulated by this  gimensionallocal version[25] of the rotationally invariant
renewed interest, we focus in the present paper on structurglynq-orientational order parame{@7]

changes along the best studied two-dimensional melting tran-
sition, the hard-disk transitior.,,21-24,4-7,10,11,14,18n 4r

particular, we investigate the behavior of tleeal order pa- QAN =5 >,

rameter based on a local structure analysis mefl26¢26| I+1 !
and constant volume Monte Carlo simulations and obtain ) ) )
bounds for the extension of the fluid-solid coexistence reWhereNo=6 nearest neighbors are included. The variables
gion. Our data lead us to suspect possible systematic discrep? :¢i) measure the angle between the imaginary bond be-

ancies between results based on constant volume and comeen the central particle and theh neighbor relative to
stant pressure simulations. some arbitrary but spatially fixed reference axis, and we

choose 6;=w/2 for the two-dimensional case. Two-
dimensional systems with a sixfold orientationally modu-
lated structure of the solid phase can be analy2&givia the

The standard canonical Metropolis Monte Carlo algorithmlocal order parametes, henceforth denoted k9. Contrary
with local moves was used to generate the configurations dP other approaches, see the discussion in Réi, the fol-
the hard-disk fluid. The simulations were performed in alowing analysis is based on the distribution functiB(Q)
rectangular box of aredl with an aspect ratio of 2/3 sub- itself, i.e., without deanlng anylobal order parameter ob-
ject to periodic boundary conditions, see Sec. Il in Rl tained by averagin@(r) over all bonds in the systefi27].
for details. The systems consisted Mf=4096 hard disks. The central ide&25,26 is to decompose a given configura-
Note that this relatively small system size is sufficient be-tion into patterns of typical local structures fluctuating
cause we are at present not aiming to analyze a long-rang#ound some “reference structures” sampled from distribu-
order parameter, but rather focus total properties. The tionsP(Q,&) for ideal local pattern§’, assuming that the
systems were set up on a triangular lattice and were equilifluid and the solid are characterized by differéjtand thus
brated for 16 attempted moves per particle each. After Q values. The natural choid, for a two-dimensional solid
equilibration, 100 configurations were generated at eacks the symmetric hexagonal seven-atom cluster with a six-
value of the density, with a propagation of 200 attemptedold coordinated central particle. Other patterns that we call
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FIG. 1. Raw data for the local bond-orientational order param-

eterc,, see text for the definition, as a function of the reduced,g 5 fynction of the reduced density of the=4096 particle hard-
density of theN =4096 particle hard-disk fluid. Statistical error bars yjsy fiyig close to the transition region. Previous simulation esti-

are shown.

FIG. 2. Smoothea,, data from Fig. 1, see text for more details,

mates of the coexistence region or transition point are included for

comparison, see Table | for further details.
I'y correspond to nonhexagonal defect structures and reflect

the arrangement of particles in the vicinity of dislocations.increases in a nonlinear fashion from zero to a value of about
The statistical displacements of the particles constituting th€.5 at a density that is slightly larger than 0.85. From there
clusters are taken into account as Gaussian fluctuations withn it appears to increase linearly to a density of about 0.9,
a mean fluctuation amplitudg,/+/2. The simulated distribu- followed again by a nonlinear increase before it reaches its
tion P(Q,p) is decomposed into solidlike and fluidlike con- largest value in the densest system investigated. These raw
tributions data forc,, are subject to statistical scatter, and especially so
at the onset of the linear regime. Therefore we applied a
smoothing procedure to the data of Fig. 1 by taking local
running averages of these data. The result is presented in Fig.
using three fit parameters,, &,, and &y4; note that 2 in the density range of interest; error bars are difficult to
ch,+cy=1 in this case. The distributioP(Q,p) was ob- assess in this case and were therefore omitted. After reduc-
tained from the Monte Carlo trajectories at 51 values of theion of the scatter the three regions, and especially the den-
density ranging fromp=0.51 in the dilute fluid phase to sities which separate them, appear much more clearly. The
p=0.95 in the solid phase. low density boundary of the intermediate linear region is
p¢~0.882, and its upper limit ips~0.912. We applied run-
ning averages of different lengths to the raw data; all of them
yield very similar results for the extension of the linear re-
The data including statistical error bars for the measureyion in the plot.
¢y, of the contribution of local hexagonal order are shown in  What is the meaning of the special densijiggndp, that
Fig. 1 as a function of density over the full range covered.delimit the linear region? The quantity, as we define it can
The ideal solid phase in two dimensions is characterized bpe viewed as a specifibcal order parameter for sixfold
local (and in fact global, i.e., long-rangssixfold orienta-  bond-orientational orddB]. In the case of a first-order phase
tional order. Thus the functioo,(p) is expected to reach its transition in an ensemble that allows for the coexistence of
largest value in the dense phase. The fluid phase, on the othire ordered and disordered phases, such a quantity is ex-
hand, contains a large number of local defect structures witpected to increase linearly in the coexistence region from a
relative angles between the bonds that deviate from 60°mall value at the boundary with the pure disordered phase
which leads to a small value of the local hexagonal ordeto a larger value at the point where the ordered phase be-
parameterc,,. In the limit of a very dilute fluidc, should comes stable as a pure phase. This is nothing else than the
vanish. These expectations are borne out by the data. In theassic lever rule that governs phase coexistencecldata
displayed density range spanning the regime from the dilutén Fig. 2 with the linear region around densities of 0.9 clearly
fluid up to the solid,c,, increases from essentially zero to display such a behavior. In addition, it should be kept in
nearly unity in the dense phase as expected. We note that tiheind thatc,, is a local measure of the bond-orientational
value in the solid phase is slightly smaller than unity becauserder of the fluid which is defined on the smallest meaning-
of a well-defined average number of defect and interstitiaful length scale. On the basis of these considerations we
sites that are present in thermodynamic equilibrium. conclude thatp; and p; are generous estimates for the
A closer inspection of the data in Fig. 1 reveals that bounds that separate the fluid-solid coexistence region from

P(Q,p)=ch(p)Pn(Q,&n) +Cy(p)Py(Q,&q), 2

Ill. RESULTS AND DISCUSSION
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TABLE I. Estimates for the extension in density of the flyigd and solidps phases of the hard-disk
system; see text for a discussion and more details.

Authors Reference [T Ps Po

Alder and Wainwright 1962 [1] 0.880 0.912
Canonical:N=870, PBC
van der Waals loop ip vs p curve

Zollweg and Chester 1992 [6] 0.887 0.904
Canonical:N=16384, PBC
Tie line from histogram reweighting

Lee and Strandburg 1992 [71° 0.888 0.927
Constant pressuréi<400, PBC
Weber and Marx 1994 [10] 0.880 0.905 0.8985

Canonical:N=16384, PBC

Finite-size scaling, cumulant analysis
Fernaadez, Alonso, and Stankiewicz 1995 [14] 0.916 0.914 0.91%
Constant pressuréi<15876, HCW

Finite-size scaling assuming HNY behavior
Present work 0.882 0.912 0.897
Canonical:N=4096, PBC

Local structure analysis

3Periodic boundary conditions.

bValues obtained by extrapolating the data in Fig. 5, quoted from [lR&f.
°Crossing point of order parameter cumulant.

dessential divergence of correlation length from a HNY fit of fluid phase data.
®Hard crystalline wall boundary conditions.

fAccording to lever rulgpg=ps— (ps— p¢)x for x=1/2.

the pure fluid and pure solid phases, respectively. The mideontribute with equal weight to the system under coexist-
point of the coexistence region is simply given according toence.
po=pi+ (ps— ps)X for x=1/2, wherex is the fraction of the The remaining two calculations of Lee and Strandburg
solid phase in the coexistence regime. Using the densitied.S) [7] and Fernadez, Alonso, and Stankiewi¢EAS) [14]
ps andpg inferred from Fig. 2, we obtaip,~0.897 for the resulted in melting densities that are not contained in the
density at which the fluid and solid phases contribute withbounds obtained from the analysis of the local orientational
equal weight to the hard-disk system in the coexistence reproperties of the hard-disk system. It should be noted that
gime. Lee and Strandburfy] did not themselves report these esti-
Let us compare these data inferred from the local strucmates for the extension of the coexistence region since they
ture analysis with data based on different approaches. Sonmnclude that they “are not in the scaling regime yet;” here,
of the previous estimates for the coexistence region of thave use the values as quoted in R], which can be ob-
hard-disk system are indicated by arrows in Fig. 2 in artained by linear extrapolation of the data plotted in Fig. 5 of
obvious notation, and are collected with more information inRef. [7]. But nevertheless, Lee and Strandburg state “that
Table I. Our upper bound agrees best with the classic estthe melting density is somewhat higher than previously be-
mate of Alder and WainwrightAW) [1]. This is consistent lieved” [7]. In the most recent investigation by Fendez
since this estimate was obtained from small systems of onlgnd co-workerdFAS) [14] based on quite large systems the
N =870 particles, which should compare well to a bound thatwthors used finite-size scaling of the bond-orientational sus-
is derived from docal order parameter. The two remaining ceptibility assuming HNY-type behavigsee, however, Ref.
much more recent estimates of Zollweg and Che&€) [6]  [15] for a critical discussion They argue that a single con-
and Weber and MarfWM) [10] based on constant volume tinuous transition from the fluid to the solid occurs at a den-
simulations fall into the coexistence region as delimited bysity of aboutp,~0.916; the corresponding boundaries de-
our present bounds. However, the coexistence region fromicted in Fig. 2 indicate the inferred mutual overlapping
ZC [6] and WM[10] is much narrower, which is again con- extensions of the fluid and solid phagéd]. This density is
sistent as these estimates were obtained with much largéigher than any other estimate, except for the extrapolated
systems and finite-size scalif@0]. We mention in passing melting density of Lee and Strandburg]; we mention that
that the estimate, that we obtained by making use of the nonperiodic boundary conditions, the hard crystalline wall
simple lever rule and our coexistence boundaries is close tboundary condition$8], were used by FA$14], whereas
the value obtained from the cumulant intersection methogeriodic boundary conditions were applied in all other hard-
[10], see Table | and Ref§10,11] for more information. disk simulations. The common feature of the two calcula-
This is consistent because both procedures should yield drons, LS[7] and FAS[14], which both lead to higheps
estimate for that density at which the two coexisting phasesalues, is that they were both performed in the constant pres-
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sure ensemble, and not in the constant volume ensemble like IV. SUMMARY AND CONCLUSIONS
all the other simulations. In the present context, this could be
interpreted as an indication that constant pressure simula- Constant volume Metropolis Monte Carlo simulations of
tions tend to yield a higher densip, above which the pure systems of 4096 hard disks were performed. For many den-
solid phase becomes stable than constant volume simulatioggies spanning the range from the dilute fluid to the dense
based on similar particle numbers. solid, the configurations were analyzed in terms dbeal

At this point it should be mentioned that standard constangyder parameter that is sensitive to the degree of local sixfold
volume simulations impose periodic boundary conditionsyong-orientational order. This quantity is found to increase

based on a fixed box which especially for small system sizeg,m 4 minimum value in the fluid phase to its maximum in
tend to bias the system. This might lead to a stabilization of

the ordered phase in cases where for a given volume thl%

fixed Sh"’?pe of the S|mulat|oq box is chosen to be COmmen(f]rst-order transition, and thus obtain generous bounds for the
surate with the expected lattice structure of the stable soli . . . . .
%xtensmn of a possible coexistence region between the fluid

phase. Constant pressure simulations, on the other han hase and two-dimensional solid phase. This estimate for the
should be less biased in favor of the solid as the volume & P )

allowed to fluctuate during the simulation. FAS4], how- coexistence region is consistent with the previously pub-
ever, do not use periodic boundary conditions in their conlished data obtained in the constant volume ensemble. How-

stant pressure simulations, but rather the nonperiodic hargVer those estimates for the melting density that were ob-
crystalline wall boundary conditior{8] in order to facilitate  f@ined with constant pressure Monte Carlo methods have a
the nucleation of crystal growtfl4]. Thus the reflecting tendency to exceed our bound as well as the other estimates
boundary of their fluctuating simulation box is given by that based on constant volume simulations. Based on this obser-
of a rectangular box superimposed on a triangular lattic&/ation, one is tempted to speculate that this might be a mani-
where all sites on the boundary are occupied by disks. Thifestation of an ensemble difference due to finite particle
again seems to favor the ordered phase for small systemumbers. A similar conclusion was already reached for a
sizes, which is similar to the bias in constant volume simujpurely repulsive Weeks-Chandler-Andersen soft-disk fluid
lations. The least bias in simulations using a constant numbeimulated in the constant volume and constant pressure en-
of particles is expected for the Parrinello-Rahman methogembled 9] using molecular dynamics. Because these obser-
where both the volume and the shape of the box are allowedations are most probably also valid for other fluids in two
to fluctuate[28]. Of course, all these considerations becomedimensions further clarification of that aspect is certainly
the less important the larger the system. warranted.

is increase is effectively linear as expected in the case of a
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