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Local structure analysis of the hard-disk fluid near melting
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The local structure of the hard-disk fluid is studied across its melting transition by means of Monte Carlo
simulations and measurement of a local order parameter. Evidence for a linear behavior of this quantity in an
intermediate density range is found, as well as indications for a possible ensemble difference between constant
volume and constant pressure simulations within the presently accessible system sizes.
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I. MOTIVATION

The melting transition of strictly two-dimensional fluid
discovered as early as 1962 by Alder and Wainwright
hard disks@1#, has been under debate since Nelson, Halpe
and Young proposed, based on ideas of Berezinski�, Koster-
litz, and Thouless, a novel continuous two-step scenario@2#
in addition to the usual first-order one-step transition. T
possibility spurred on the simulation community to sea
for this Halperin-Nelson-Young~HNY! transition in a vari-
ety of simple and complex fluids. We refer to the extens
reviews and discussions in Ref.@3# for more information.
Despite this longstanding quest to solve the puzzle of m
ing in two dimensions more recently quite a few compu
tional studies@4–17# reexamined the problem within variou
models and using many different techniques. For novel t
oretical approaches see Refs.@18–20#. Stimulated by this
renewed interest, we focus in the present paper on struc
changes along the best studied two-dimensional melting t
sition, the hard-disk transition@1,21–24,4–7,10,11,14,15#. In
particular, we investigate the behavior of thelocal order pa-
rameter based on a local structure analysis method@25,26#
and constant volume Monte Carlo simulations and obt
bounds for the extension of the fluid-solid coexistence
gion. Our data lead us to suspect possible systematic disc
ancies between results based on constant volume and
stant pressure simulations.

II. METHODS

The standard canonical Metropolis Monte Carlo algorith
with local moves was used to generate the configuration
the hard-disk fluid. The simulations were performed in
rectangular box of areaV with an aspect ratio of 2/A3 sub-
ject to periodic boundary conditions, see Sec. III in Ref.@11#
for details. The systems consisted ofN54096 hard disks.
Note that this relatively small system size is sufficient b
cause we are at present not aiming to analyze a long-ra
order parameter, but rather focus onlocal properties. The
systems were set up on a triangular lattice and were eq
brated for 106 attempted moves per particle each. Aft
equilibration, 100 configurations were generated at e
value of the density, with a propagation of 200 attemp
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moves per particle between each two configurations. Pr
ous investigations@10# had shown that theglobal bond-
orientational correlation function typically decays on a tim
scale of 50 attempted moves per particle. The generated
figurations can thus safely be regarded as statistically in
pendent.

Densities are reported as usual in reduced u
r5s2N/V where s denotes the hard-disk diameter. Th
conversion between this reduced density and the corresp
ing reduced volumev is given byr52/(A3v). The maxi-
mally compressed solid attains a close-packed density
rmax52/A3'1.15 in these units.

The technique we selected to monitor the fluid-to-so
transition relies on the analysis of local structures in the fl
@25#, see Refs.@25,26# for more details. We quantify the
local order near a point particle located atrW by the two-
dimensionallocal version @25# of the rotationally invariant
bond-orientational order parameter@27#

Ql
2~rW !5

4p

2l11 (
m52 l

l U 1N0
(
i51

N0

Ylm~u i ,f i !U2, ~1!

whereN056 nearest neighbors are included. The variab
(u i ,f i) measure the angle between the imaginary bond
tween the central particle and thei th neighbor relative to
some arbitrary but spatially fixed reference axis, and
choose u i5p/2 for the two-dimensional case. Two
dimensional systems with a sixfold orientationally mod
lated structure of the solid phase can be analyzed@25# via the
local order parameterQ6, henceforth denoted byQ. Contrary
to other approaches, see the discussion in Ref.@26#, the fol-
lowing analysis is based on the distribution functionP(Q)
itself, i.e., without defining anyglobal order parameter ob
tained by averagingQ(rW) over all bonds in the system@27#.
The central idea@25,26# is to decompose a given configura
tion into patterns of typical local structures fluctuatin
around some ‘‘reference structures’’ sampled from distrib
tionsPk(Q,jk) for ideal local patternsGk assuming that the
fluid and the solid are characterized by differentGk and thus
Q values. The natural choiceGh for a two-dimensional solid
is the symmetric hexagonal seven-atom cluster with a
fold coordinated central particle. Other patterns that we c
6855 © 1997 The American Physical Society
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Gd correspond to nonhexagonal defect structures and re
the arrangement of particles in the vicinity of dislocation
The statistical displacements of the particles constituting
clusters are taken into account as Gaussian fluctuations
a mean fluctuation amplitudejh /A2. The simulated distribu-
tion P(Q,r) is decomposed into solidlike and fluidlike con
tributions

P~Q,r!5ch~r!Ph~Q,jh!1cd~r!Pd~Q,jd!, ~2!

using three fit parametersch , jh , and jd ; note that
ch1cd51 in this case. The distributionP(Q,r) was ob-
tained from the Monte Carlo trajectories at 51 values of
density ranging fromr50.51 in the dilute fluid phase to
r50.95 in the solid phase.

III. RESULTS AND DISCUSSION

The data including statistical error bars for the meas
ch of the contribution of local hexagonal order are shown
Fig. 1 as a function of density over the full range cover
The ideal solid phase in two dimensions is characterized
local ~and in fact global, i.e., long-range! sixfold orienta-
tional order. Thus the functionch(r) is expected to reach it
largest value in the dense phase. The fluid phase, on the
hand, contains a large number of local defect structures w
relative angles between the bonds that deviate from 6
which leads to a small value of the local hexagonal or
parameterch . In the limit of a very dilute fluidch should
vanish. These expectations are borne out by the data. In
displayed density range spanning the regime from the di
fluid up to the solid,ch increases from essentially zero
nearly unity in the dense phase as expected. We note tha
value in the solid phase is slightly smaller than unity beca
of a well-defined average number of defect and intersti
sites that are present in thermodynamic equilibrium.

A closer inspection of the data in Fig. 1 reveals thatch

FIG. 1. Raw data for the local bond-orientational order para
eter ch , see text for the definition, as a function of the reduc
density of theN54096 particle hard-disk fluid. Statistical error ba
are shown.
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increases in a nonlinear fashion from zero to a value of ab
0.5 at a density that is slightly larger than 0.85. From th
on it appears to increase linearly to a density of about 0
followed again by a nonlinear increase before it reaches
largest value in the densest system investigated. These
data forch are subject to statistical scatter, and especially
at the onset of the linear regime. Therefore we applie
smoothing procedure to the data of Fig. 1 by taking lo
running averages of these data. The result is presented in
2 in the density range of interest; error bars are difficult
assess in this case and were therefore omitted. After re
tion of the scatter the three regions, and especially the d
sities which separate them, appear much more clearly.
low density boundary of the intermediate linear region
r f'0.882, and its upper limit isrs'0.912. We applied run-
ning averages of different lengths to the raw data; all of th
yield very similar results for the extension of the linear r
gion in the plot.

What is the meaning of the special densitiesr f andrs that
delimit the linear region? The quantitych as we define it can
be viewed as a specificlocal order parameter for sixfold
bond-orientational order@3#. In the case of a first-order phas
transition in an ensemble that allows for the coexistence
the ordered and disordered phases, such a quantity is
pected to increase linearly in the coexistence region from
small value at the boundary with the pure disordered ph
to a larger value at the point where the ordered phase
comes stable as a pure phase. This is nothing else than
classic lever rule that governs phase coexistence. Thech data
in Fig. 2 with the linear region around densities of 0.9 clea
display such a behavior. In addition, it should be kept
mind that ch is a local measure of the bond-orientation
order of the fluid which is defined on the smallest meanin
ful length scale. On the basis of these considerations
conclude thatr f and rs are generous estimates for th
bounds that separate the fluid-solid coexistence region f

- FIG. 2. Smoothedch data from Fig. 1, see text for more detail
as a function of the reduced density of theN54096 particle hard-
disk fluid close to the transition region. Previous simulation e
mates of the coexistence region or transition point are included
comparison, see Table I for further details.
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TABLE I. Estimates for the extension in density of the fluidr f and solidrs phases of the hard-disk
system; see text for a discussion and more details.

Authors Reference r f rs r0

Alder and Wainwright 1962 @1# 0.880 0.912
Canonical:N5870, PBCa

van der Waals loop inp vs r curve
Zollweg and Chester 1992 @6# 0.887 0.904
Canonical:N516384, PBC
Tie line from histogram reweighting
Lee and Strandburg 1992 @7#b 0.888 0.927
Constant pressure:N<400, PBC
Weber and Marx 1994 @10# 0.880 0.905 0.8985c

Canonical:N516384, PBC
Finite-size scaling, cumulant analysis
Fernández, Alonso, and Stankiewicz 1995 @14# 0.916 0.914 0.916d

Constant pressure:N<15876, HCWe

Finite-size scaling assuming HNY behavior
Present work 0.882 0.912 0.897f

Canonical:N54096, PBC
Local structure analysis

aPeriodic boundary conditions.
bValues obtained by extrapolating the data in Fig. 5, quoted from Ref.@6#.
cCrossing point of order parameter cumulant.
dEssential divergence of correlation length from a HNY fit of fluid phase data.
eHard crystalline wall boundary conditions.
fAccording to lever ruler05r f2(rs2r f)x for x51/2.
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the pure fluid and pure solid phases, respectively. The m
point of the coexistence region is simply given according
r05r f1(rs2r f)x for x51/2, wherex is the fraction of the
solid phase in the coexistence regime. Using the dens
r f andrs inferred from Fig. 2, we obtainr0'0.897 for the
density at which the fluid and solid phases contribute w
equal weight to the hard-disk system in the coexistence
gime.

Let us compare these data inferred from the local str
ture analysis with data based on different approaches. S
of the previous estimates for the coexistence region of
hard-disk system are indicated by arrows in Fig. 2 in
obvious notation, and are collected with more information
Table I. Our upper bound agrees best with the classic e
mate of Alder and Wainwright~AW! @1#. This is consistent
since this estimate was obtained from small systems of o
N5870 particles, which should compare well to a bound t
is derived from alocal order parameter. The two remainin
much more recent estimates of Zollweg and Chester~ZC! @6#
and Weber and Marx~WM! @10# based on constant volum
simulations fall into the coexistence region as delimited
our present bounds. However, the coexistence region f
ZC @6# and WM @10# is much narrower, which is again con
sistent as these estimates were obtained with much la
systems and finite-size scaling@10#. We mention in passing
that the estimater0 that we obtained by making use of th
simple lever rule and our coexistence boundaries is clos
the value obtained from the cumulant intersection meth
@10#, see Table I and Refs.@10,11# for more information.
This is consistent because both procedures should yiel
estimate for that density at which the two coexisting pha
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contribute with equal weight to the system under coex
ence.

The remaining two calculations of Lee and Strandbu
~LS! @7# and Ferna´ndez, Alonso, and Stankiewicz~FAS! @14#
resulted in melting densities that are not contained in
bounds obtained from the analysis of the local orientatio
properties of the hard-disk system. It should be noted t
Lee and Strandburg@7# did not themselves report these es
mates for the extension of the coexistence region since
conclude that they ‘‘are not in the scaling regime yet;’’ he
we use the values as quoted in Ref.@6#, which can be ob-
tained by linear extrapolation of the data plotted in Fig. 5
Ref. @7#. But nevertheless, Lee and Strandburg state ‘‘t
the melting density is somewhat higher than previously
lieved’’ @7#. In the most recent investigation by Ferna´ndez
and co-workers~FAS! @14# based on quite large systems th
authors used finite-size scaling of the bond-orientational s
ceptibility assuming HNY-type behavior~see, however, Ref
@15# for a critical discussion!. They argue that a single con
tinuous transition from the fluid to the solid occurs at a de
sity of aboutr0'0.916; the corresponding boundaries d
picted in Fig. 2 indicate the inferred mutual overlappin
extensions of the fluid and solid phases@14#. This density is
higher than any other estimate, except for the extrapola
melting density of Lee and Strandburg@7#; we mention that
nonperiodic boundary conditions, the hard crystalline w
boundary conditions@8#, were used by FAS@14#, whereas
periodic boundary conditions were applied in all other ha
disk simulations. The common feature of the two calcu
tions, LS @7# and FAS@14#, which both lead to higherrs
values, is that they were both performed in the constant p
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sure ensemble, and not in the constant volume ensemble
all the other simulations. In the present context, this could
interpreted as an indication that constant pressure sim
tions tend to yield a higher densityrs above which the pure
solid phase becomes stable than constant volume simula
based on similar particle numbers.

At this point it should be mentioned that standard const
volume simulations impose periodic boundary conditio
based on a fixed box which especially for small system s
tend to bias the system. This might lead to a stabilization
the ordered phase in cases where for a given volume
fixed shape of the simulation box is chosen to be comm
surate with the expected lattice structure of the stable s
phase. Constant pressure simulations, on the other h
should be less biased in favor of the solid as the volum
allowed to fluctuate during the simulation. FAS@14#, how-
ever, do not use periodic boundary conditions in their c
stant pressure simulations, but rather the nonperiodic h
crystalline wall boundary conditions@8# in order to facilitate
the nucleation of crystal growth@14#. Thus the reflecting
boundary of their fluctuating simulation box is given by th
of a rectangular box superimposed on a triangular lat
where all sites on the boundary are occupied by disks. T
again seems to favor the ordered phase for small sys
sizes, which is similar to the bias in constant volume sim
lations. The least bias in simulations using a constant num
of particles is expected for the Parrinello-Rahman meth
where both the volume and the shape of the box are allo
to fluctuate@28#. Of course, all these considerations beco
the less important the larger the system.
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IV. SUMMARY AND CONCLUSIONS

Constant volume Metropolis Monte Carlo simulations
systems of 4096 hard disks were performed. For many d
sities spanning the range from the dilute fluid to the de
solid, the configurations were analyzed in terms of alocal
order parameter that is sensitive to the degree of local six
bond-orientational order. This quantity is found to increa
from a minimum value in the fluid phase to its maximum
the solid. We observe an intermediate density region wh
this increase is effectively linear as expected in the case
first-order transition, and thus obtain generous bounds for
extension of a possible coexistence region between the
phase and two-dimensional solid phase. This estimate for
coexistence region is consistent with the previously p
lished data obtained in the constant volume ensemble. H
ever, those estimates for the melting density that were
tained with constant pressure Monte Carlo methods hav
tendency to exceed our bound as well as the other estim
based on constant volume simulations. Based on this ob
vation, one is tempted to speculate that this might be a m
festation of an ensemble difference due to finite parti
numbers. A similar conclusion was already reached fo
purely repulsive Weeks-Chandler-Andersen soft-disk fl
simulated in the constant volume and constant pressure
sembles@9# using molecular dynamics. Because these obs
vations are most probably also valid for other fluids in tw
dimensions further clarification of that aspect is certain
warranted.
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